Mahonian Numbers

For what values of n > 1 does there exist a number m that can be written
in the form a; + ...+ a, (with a; € {1},a; € {1,2},...,0a, € {1,2,...,n})
in (n—1)! or more ways?

Let us define a function f to return the frequency of a sum k formed by
ar+...+a, as
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Explanation of cases:
1. f(n,k) =0 if k < n: It is impossible to make a selection (aj,..., a,)

that sums to less than n if a; > 1.

2. f(n,k) = 1 if kK = n: There is only 1 selection (aj,...,a,) that
produces n, which is when all a; = 1.

3 .
3. f(n,k) = f (n, n(nTH —k): We can show that for every valid
selection (aj, ay,...,a,) that produces k, there is a corresponding
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selection (aj, aj,...,a/) that produces >

— k, where
al =i+1—q

Note that the mapping of ai =1+ 1 — q; is a bijection because

(a) a; €{1,2,...,i}and af € {1,2,...,1}

(b) The mapping is invertible as applying the mapping twice over
results in

a/ =i+l—a=i+1—-(i+1—a)=q
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Looking at the sums k = a;+...4+a, and k' = aj+...+a}, we have
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As we have shown the mapping of (ai,...,a,) — (af,...,a}) is bi-
jective, every selection that produces a sum k has a corresponding
. . 3
selection producing the sum k' = M — k. Thus, the frequen-
. 3
cies of sums k and @ — k are equal and
3
f(n, k) =f(n,“(++)—k)

4. f(n,k) = Y f(n—1,k—1): This recurrence relation returns all the
i

ways we can make a target sum k from a selection (ai,...,a,) by
counting all the ways we can make a target sum k—1i from a selection
(ajy...,an1) for T < i < n, since we can exclude at least a,, = 1
(lower bound of i) and at most i = a, = n (upper bound of i) from
the original selection.

Proof by induction. We can now use induction on n to show that for
n>5f(nk)<(n—1)L

Base case: n = 5. The maximum value of f(5,k) for all k is 22 <
(5—1)! =24. Thus, the base case holds.
Inductive hypothesis: Suppose for all m > 5, f(m,k) < (m —1)!. Then,
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For fixed j, the inner sum has (m. )Z(m ) + 1 non-zero terms since
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k —1i—j must be in the range [m —1, mim=1)

]. So, the number of values
of 1 that contribute a non-zero term to the inner summation is at most
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Then, we can bound f (m + 1,k) by
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since the total number of arrangements of length m — 1 is counted by i
choices for a;, resulting in (m —1) .

(m—1) (m—2)
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Since 4+ 1 < m for m > 5, we can simplify further to

flm+1L,k)<m-(m—1)! =m!

Thus, the inductive step holds, showing that for all n > 5, the number of
sums that can be written in the form a; + ...+ a, with a; € {1,...,1} is
less than (n— 1)!. We can quickly verify the cases n = 1 through n =4 as
having sum-frequencies of 1 =0!,1 = 11,2 = 2!, and 6 = 3! respectively.
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I did some further analysis into this problem and found that
f(n,k) = X"Gy (x)

which denotes the coefficient of x* in the polynomial expansion of the gen-
erating function
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It can be shown that the construction of G, (x) matches the reasoning pro-
vided above for constructing f (n, k).

Furthermore, I found the approximation

f(n,k) ~ \/§ (] — %) . Z (_] )m (;) (X_m)n—1
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by manipulating the Irwin-Hall distribution based on how f and G,, are
constructed, as well as including some constants and functions for conti-
nuity correction based on the expected end-behavior of the distribution.
Below is a table of the average error of the approximation across all k when
compared to the actual values of f (n,k), also known as Mahonian num-
bers, as well as some graphs showing the approximation superimposed on
the distribution.

Average error for k

5 9.460981%
10 2.900464%
20 1.177748%

50 0.3454274%
80 0.2891027%

Due to hardware constraints, I was unable to compute error rates or gen-
erate plots for larger values of n.
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