
Mahonian Numbers

For what values of n ≥ 1 does there exist a number m that can be written

in the form a1 + . . . + an (with a1 ∈ {1}, a2 ∈ {1, 2}, . . . , an ∈ {1, 2, . . . , n})

in (n− 1) ! or more ways?

Let us de�ne a function f to return the frequency of a sum k formed by

a1 + . . .+ an as

f (n, k) =



0, if k < n

1, if k = n

f

(
n,

n (n+ 3)

2
− k

)
, if k >

n (n+ 3)

4
n∑
i=1

f (n− 1, k− i)

Explanation of cases:

1. f (n, k) = 0 if k < n: It is impossible to make a selection (a1, . . . , an)

that sums to less than n if ai ≥ 1.

2. f (n, k) = 1 if k = n: There is only 1 selection (a1, . . . , an) that

produces n, which is when all ai = 1.

3. f (n, k) = f

(
n,

n (n+ 3)

2
− k

)
: We can show that for every valid

selection (a1, a2, . . . , an) that produces k, there is a corresponding

selection (a ′
1, a

′
2, . . . , a

′
n) that produces

n (n+ 3)

2
− k, where

a ′
i = i+ 1− ai

Note that the mapping of a ′
i = i+ 1− ai is a bijection because

(a) ai ∈ {1, 2, . . . , i} and a ′
i ∈ {1, 2, . . . , i}

(b) The mapping is invertible as applying the mapping twice over

results in

a ′′
i = i+ 1− a ′

i = i+ 1− (i+ 1− ai) = ai
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Looking at the sums k = a1+ . . .+an and k ′ = a ′
1+ . . .+a ′

n, we have

k ′ =

n∑
i=1

(i+ 1− ai) = n+

n∑
i−1

(i− ai) = n+
n (n+ 1)

2
−

n∑
i=1

ai =
n (n+ 3)

2
−k

As we have shown the mapping of (a1, . . . , an) 7→ (a ′
1, . . . , a

′
n) is bi-

jective, every selection that produces a sum k has a corresponding

selection producing the sum k ′ =
n (n+ 3)

2
− k. Thus, the frequen-

cies of sums k and
n (n+ 3)

2
− k are equal and

f (n, k) = f

(
n,

n (n+ 3)

2
− k

)

4. f (n, k) =
n∑
i=1

f (n− 1, k− i): This recurrence relation returns all the

ways we can make a target sum k from a selection (a1, . . . , an) by

counting all the ways we can make a target sum k− i from a selection

(a1, . . . , an−1) for 1 ≤ i ≤ n, since we can exclude at least an = 1

(lower bound of i) and at most i = an = n (upper bound of i) from

the original selection.

Proof by induction. We can now use induction on n to show that for

n ≥ 5, f (n, k) < (n− 1) !.

Base case: n = 5. The maximum value of f (5, k) for all k is 22 <

(5− 1) ! = 24. Thus, the base case holds.

Inductive hypothesis: Suppose for all m ≥ 5, f (m,k) < (m− 1) !. Then,

f (m+ 1, k) =

m+1∑
i=1

f (m,k− i)

=

m+1∑
i=1

m∑
j=1

f (m− 1, k− i− j)

=

m∑
j=1

m+1∑
i=1

f (m− 1, k− i− j)
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For �xed j, the inner sum has
(m− 1) (m− 2)

2
+ 1 non-zero terms since

k− i− j must be in the range [m−1,
m (m− 1)

2
]. So, the number of values

of i that contribute a non-zero term to the inner summation is at most

(m− 1) (m− 2)

2
+ 1

Then, we can bound f (m+ 1, k) by

f (m+ 1, k) ≤
m∑
j=1

(
(m− 1) (m− 2)

2
+ 1

)
· f (m− 1, k− j)

≤
(
(m− 1) (m− 2)

2
+ 1

)
·

m∑
j=1

f (m− 1, k− j)

≤
(
(m− 1) (m− 2)

2
+ 1

)
· (m− 1) !

since the total number of arrangements of length m − 1 is counted by i

choices for ai, resulting in (m− 1) !.

Since
(m− 1) (m− 2)

2
+ 1 < m for m ≥ 5, we can simplify further to

f (m+ 1, k) < m · (m− 1) ! = m!

Thus, the inductive step holds, showing that for all n ≥ 5, the number of

sums that can be written in the form a1 + . . . + an with ai ∈ {1, . . . , i} is

less than (n− 1) !. We can quickly verify the cases n = 1 through n = 4 as

having sum-frequencies of 1 = 0!, 1 = 1!, 2 = 2!, and 6 = 3! respectively.

I did some further analysis into this problem and found that

f (n, k) = [xk]Gn (x)

which denotes the coe�cient of xk in the polynomial expansion of the gen-

erating function

Gn (x) =

n∏
i=1

i∑
j=1

xj
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It can be shown that the construction of Gn (x) matches the reasoning pro-

vided above for constructing f (n, k).

Furthermore, I found the approximation

f (n, k) ≈
√
3

(
1−

1

n

)
·

⌊x⌋∑
m=0

(−1)m
(
n

m

)
(x−m)n−1

where

x = sgn (c (n, k)) · |c (n, k) |
1

log(n)·n +
n

2

and

c (n, k) =
k− µ(

1+ 1
log(n)

)
· n−1

2

with

µ =
n (n+ 3)

4

by manipulating the Irwin-Hall distribution based on how f and Gn are

constructed, as well as including some constants and functions for conti-

nuity correction based on the expected end-behavior of the distribution.

Below is a table of the average error of the approximation across all k when

compared to the actual values of f (n, k), also known as Mahonian num-

bers, as well as some graphs showing the approximation superimposed on

the distribution.

n Average error for k

5 9.460981%

10 2.900464%

20 1.177748%

50 0.3454274%

80 0.2891027%

Due to hardware constraints, I was unable to compute error rates or gen-

erate plots for larger values of n.
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Mahonian approximation for n = 5 Mahonian approximation for n = 10

Mahonian approximation for n = 20
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